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Experimental studies have shown that convergent–divergent nozzles, when run at low
pressure ratios, often undergo a flow resonance accompanied by emission of acoustic
tones. The phenomenon, different in characteristics from conventional ‘screech’ tones,
is addressed in this paper. Unlike screech, the resonant frequency (fN) increases
with increasing supply pressure. There is a ‘staging’ behaviour; odd-harmonic stages
resonate at lower pressures while the fundamental occurs in a wide range of higher
pressures corresponding to a ‘fully expanded Mach number’ (Mj) around unity. Within
a stage, fN varies approximately linearly with Mj; the slope of the variation steepens
when the angle of divergence of the nozzle is decreased. Based on the data, correlation
equations are provided for the prediction of fN . A companion computational study
captures the phenomenon and predicts the frequencies, including the stage jump,
quite well. While the underlying mechanisms are not completely understood yet, it is
clear that the unsteadiness of a shock occurring within the divergent section plays
a direct role. The shock drives the flow downstream like a vibrating diaphragm,
and resonance takes place similarly to the (no-flow) acoustic resonance of a conical
section having one end closed and the other end open. Thus, the fundamental is
accompanied by a standing one-quarter wave within the divergent section, the next
stage by a standing three-quarter wave, and so on. The distance from the foot of the
shock to the nozzle exit imposes the pertinent length scale. The principal trends in
the frequency variation are explained qualitatively from the characteristic variation of
that length scale. A striking feature is that tripping of the nozzle’s internal boundary
layer tends to suppress the resonance. It is likely that the trip effect occurs due to a
break in the azimuthal coherence of the unsteady flow.

1. Introduction
Flow through a nozzle, especially one involving an abrupt area change, often

encounters aeroacoustic resonance. Such flows through ‘whistler nozzles’ have been
studied by Hill & Greene (1977) and by Hussain & Hasan (1983). Resonance of
similar flows discharging through a duct or ‘ejector’, involving choked and supersonic
conditions, have been studied by Witczak (1977) and by Krothapalli & Hsia (1996).
The resonance in many cases could be traced to a coupling between the duct acoustic
modes and the instability of the shear layer originating from the sudden expan-
sion. With supersonic flows, screech tones (Powell 1953; Tam 1995; Raman 1998),
themselves involving a not-well-understood feedback loop, could come into play and
interact with the duct acoustic modes to set up a more complex resonance.
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The present study concerns nozzles with a smooth convergence to the throat and
then a smooth divergence up to the exit without any sudden area change. Resonance
and tones are also encountered with such a nozzle. As the pressure driving the flow is
gradually increased or when the flow is gradually brought to a halt from an operating
condition, tones of various frequencies may be heard. Most well known are the screech
tones that occur at relatively large pressures involving off-design, overexpanded or
underexpanded conditions. Tones can also occur at very low pressures with entirely
subsonic flow, often due to flow-induced acoustic resonance of the jet facility. In the
present study the focus is on an intermediate range of pressures when a shock exists
within the diverging section of the nozzle. In this range of operating conditions the
flow often locks on to a resonance accompanied by very loud tones.

Such tones have been noted in convergent–divergent (C–D) nozzles by others ‘as
a precursor to screech’ (J. M. Seiner 1998, private communication), as well as in
subsonic diffusers by the authors (Zaman & Dahl 1990). In industrial tests with
nozzles a howling sound has sometimes been heard at low pressure ratios. About
two decades ago, a series of experiments was conducted with a two-dimensional
diffuser run at ‘transonic’ conditions (Chen, Sajben & Kroutil 1979; Sajben, Bogar &
Kroutil 1980; Bogar, Sajben & Kroutil 1983; Hsieh & Coakley 1987). A self-excited
flow oscillation was observed; the results of this and some other past work will
be compared in § 4.1. However, a literature search on nozzle aerodynamics and jet
noise yielded no other documentation of the phenomenon. Even though the tone
could be just as intense and easily mistaken as screech on a casual observation,
to the authors’ knowledge, there has not been any report or recognition of it in
the vast literature dealing with screech. Our first investigation was conducted about
two years ago (Zaman & Dahl 1999). Those results, distinguishing the phenomenon
from conventional screech tones, will be summarized in § 3.1. However, full details
remained far from clear and the study was continued. This was justified since, apart
from academic curiosity, the phenomenon had significant practical relevance. The
reader may appreciate this relevance after the following discussion of figures 1 and 2.

Variations of the tone frequency for a variety of nozzles are shown in figure 1. The
jet from a given nozzle exhausted into the ambient of the test chamber. The frequency
was measured by spectral analysis of a microphone signal, the tone being represented
by a sharp spike in the spectra. The figure includes data from nozzles as small as
1
4

in. to as large as 31
2

in. in diameter (table 1; notations are explained in § 2). There
are also sets of data from a rectangular nozzle and a circular, co-annular nozzle.
These data make it amply clear that the phenomenon is quite common, at least in
the laboratory environment, and must be understood when considering mixing and
noise of the ensuing jet. (The dotted lines in this figure represent flow regimes based
on one-dimensional analysis, discussed in § 3.1.)

The phenomenon requires that the internal surface of the nozzle be clean and
smooth. Figure 2 shows noise spectra for the co-annular nozzle with a convergent–
divergent outer annulus (Zaman & Papamoschou 2000). The solid curve is for normal
run conditions with a smooth interior; the spike at 1.63 kHz represents the resonant
tone. The dashed curve is for the same operating conditions except that the boundary
layer in the outer annulus is tripped. The trip almost suppresses the tone! Here, let
us look at the data from a ‘reversed’ perspective and make the following observation.
An inspection reveals that there is still some energy at the resonant frequency. In fact,
it took several trials with boundary layer tripping to achieve the best suppression, as
shown. This implies that in a practical nozzle, often with non-ideal surface conditions,
the subject resonance may not be a problem outright but its mechanism may still be
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Nozzle Shape Dt (in.) De (in.) L (in.) θ (deg.)

1 Circular 0.25 0.36 0.375 8.34
2 Circular 0.25 0.36 0.75 4.20
3 Circular 0.836 1.0 1.36 3.45
4 Circular 0.95 1.0 0.866 1.65
5 Circular 2.565 3.5 4.20 6.35
6 Rectangular 1.056 (2.8× 0.313) 1.117 (2.8× 0.35) 0.325 1.85∗
7 Co-axial (C–D outer annulus) 1.197 1.391 (2.075, 1.54) 1.00 1.46∗
8 Circular 0.25 0.302 0.512 2.91
9 Circular 0.25 0.261 0.236 1.34

∗See definition in § 4.2.

Table 1. Dimensions of nozzles of figure 1.
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Figure 1. Tone frequency variation with Mj for several convergent–divergent nozzles listed in
table 1: e, nozzle 1; �, 2; C, 3; B, 4; �, 5; O, 6; 4, 7.

in play. The resultant contribution to jet noise may not be negligible; the residual
peak in the dashed curve of figure 2 contributed more than 0.5 dB to the overall
sound pressure level. Indeed, the phenomenon may be a source of ‘internal noise’
in nozzle systems. The importance of identifying such a source may be appreciated
with regards to jet noise reduction efforts. In the development of a nozzle for modern
aircraft, often one has to go to great lengths, with liners on ejector interiors, for
example, to absorb internal noise.

Apart from the relevance discussed with the help of figures 1 and 2, the phe-
nomenon may also be pertinent to unsteady transonic flow in various components
of a propulsion system. It involves shock/boundary layer interaction followed by an
adverse pressure gradient that are also ingredients for ‘. . . dynamic distortion in inlets,
pressure oscillations in ramjets, buffeting in external flows, and possibly certain types
of compressor stalls’ (Bogar et al. 1983). It is possible that the unsteadiness reported
for diffusers (in the cited reference), nozzles (Meier 1974; Hunter 1998), as well as
wing sections (Nakamura 1968; Mabey 1981), are of similar origin. Certain rocket
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Figure 2. Sound pressure level spectra for nozzle 7T1 (nozzle 7 of table 1; co-annular case). Outer
jet Mach number, Mjo = 0.86, inner jet Mach number, Mji = 1.02. Boundary layer trip applied to
interior of outer nozzle.

engine instabilities (see e.g. Culick 1993) might be coupled to similar unsteady flows
in the exhaust nozzle. As will become clear, the flow unsteadiness is internal to the
nozzle and, thus, the aerodynamic loads are large. Therefore, this may pose a threat
in terms of structural fatigue of nozzles more serious than that posed by conventional
screech tones; see Raman (1998) for a discussion of the latter. A continued study of
the phenomenon was therefore considered well justified.

In the following, results from single round convergent–divergent nozzles are first
considered. The main aim is to advance the understanding of the phenomenon while
seeking engineering correlations for prediction of its frequency and methods for its
suppression. The experimental procedures are given in § 2. In § 3, salient features of the
phenomenon are first discussed. Frequency scaling is then addressed with data from
a set of round nozzles having dimensions varied systematically. The time-averaged
internal flow is examined via a temperature-sensitive-paint technique and Pitot-static
probe measurements. Unsteady flow data, obtained by a miniature pressure probe,
are discussed in an effort to shed light on the flow mechanism. In § 4, results from
a few past investigations (most involving non-circular geometry) are first discussed;
wherever possible, the frequencies of unsteadiness are compared with the correlation
equations obtained in this study. Results from a companion numerical simulation are
then compared. Finally, in § 5, possible mechanisms are discussed before providing
a summary of the investigation. Preliminary results of this investigation have been
presented as a conference paper (Zaman, Dahl & Bencic 2001).

2. Experimental procedure
The data were obtained in three different jet facilities. In each, compressed air

passed through a cylindrical plenum chamber fitted with flow conditioning units and
then discharged through the nozzle into the quiescent ambient. The plenum chamber
diameters in the three facilities were 30, 10 and 5 in. (Zaman 1999). All experiments
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Nozzle Dt (in.) De (in.) L (in.) θ (deg.)

1 0.307 0.400 3.00 0.89
2 0.304 0.400 1.50 1.83
3 0.300 0.400 0.75 3.81
4 0.304 0.400 0.48 5.71
5 0.300 0.400 0.375 7.59
6 0.300 0.320 0.75 0.76
7 0.300 0.500 0.75 7.59

Table 2. Dimensions of the nozzles for frequency-scaling study.

involved ‘cold’ flows, i.e. the jet was unheated and the total temperature everywhere
was approximately the same as the ambient temperature.

In table 1, nozzles 3–7 were made of aluminium and the rest were made of
clear plastic. The aluminium nozzles had a ‘normally’ machined surface finish. The
surface ‘roughness height deviation’ in most cases was about 64 microinches. Some
of the plastic nozzles were polished to enable visualization of the internal flow. The
roughness height deviation in those cases was about16 microinches. Nozzles 3, 4,
8 and 9 were designed following the method of characteristics. In other cases, less
rigorous criteria were followed. The throat-to-exit axial length (L) and the half-
angle of divergence (θ = tan−1((De − Dt)/2L)) are used to characterize the overall
geometry of the divergent section. Here, De and Dt are the exit and throat diameters,
respectively. The half-angle θ for the rectangular (6) and co-annular (7) nozzles are
defined in § 4.2.

In order to address frequency scaling, a set of plastic nozzles was fabricated.
All had identical convergent sections and a nominal throat diameter, Dt = 0.3 in.
The divergent section was a straight cone starting at 0.050 in. from the throat; the
transition was faired smoothly. While keeping Dt a constant, L and De were varied.
The dimensions of the divergent section of these nozzles are given in table 2. (In the
following a given nozzle will be identified by its number followed by the table number;
e.g. ‘3T2’ will denote nozzle 3 of table 2.) Some of the nozzles had to be re-surfaced
and repolished in order for the resonance to take place prominently. This explains
the somewhat larger throat diameter for some cases. In addition to the nozzles listed
in table 2, another set of experiments was conducted starting with nozzle 2T2 and
then trimming it off in steps to provide lengths of 1.3, 1.1, 0.9, 0.75, 0.6 and 0.495 in.
Thus, for this set both L and De varied but θ remained approximately a constant
(actually, θ decreased somewhat for small L due to the fairing near the throat).
Various combinations permitted an examination of the parametric dependence of the
resonant frequency.

The frequency data were obtained from spectral analysis of the sound pressure
measured with a microphone. The bandwidth was chosen such that the accuracy of
the measured tone frequency was within 1%. The ‘jet Mach number’,

Mj =

(
((p0/pa)

(γ−1)/γ − 1)
2

γ − 1

)1/2

,

is used as the independent variable. Here, p0 and pa are plenum pressure and ambient
pressure, respectively. The uncertainty in the measurement of Mj is also well within
1%. Some other experimental procedures will be discussed along with the results.
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Figure 3. Variation of frequency (�) and amplitude (4) of tones with Mj for nozzle 3T2
(Dt = 0.3, De = 0.4, L = 0.75). Solid circles from numerical simulation (§ 4.3).

3. Results
3.1. Distinction from screech tones

Salient features of the resonance and its difference from conventional screech tones
are summarized in figures 3–6. Variations of frequency and amplitude of the tone for
nozzle 3T2 are shown in figure 3. The band of frequency data on the right represents
screech tone. This is recognized as such from the characteristic variation (frequency
decreasing with increasing Mj) and also from a comparison of the Strouhal number
with data from the literature. The ‘transonic resonance’ takes place in two stages, as
represented by the two bands of frequency data on the left. These are marked (1) and
(2) in the figure. A difference in the trend is immediately apparent. Unlike screech,
the frequency in both stages increases with increasing Mj . Another important and
pertinent distinction is that the ‘transonic tones’ occur only with C–D nozzles and
not with a convergent nozzle. In contrast, screech tones, in fact, have been studied
mostly with choked flows from convergent nozzles. The solid symbols represent
frequency data obtained from a computational study that will be discussed in § 4.3.
The amplitude data shown at the top of figure 3 demonstrate that the transonic tones
are loud, often louder than the screech tones.

In figure 3, the vertical lines demarcate flow regimes determined from one-
dimensional nozzle flow analysis, based simply on the throat-to-exit area ratio. From
the left, the first (dashed line) represents the condition when the flow is just choked,
the second (dotted line) when a ‘normal shock’ is expected at the nozzle exit, and the
third (chain-dashed line) when the flow is perfectly expanded. Thus, to the left of the
dashed line the flow is subsonic, between the dashed and dotted lines a shock is ex-
pected in the divergent section, between the dotted and the chain-dashed lines the flow
is overexpanded, and to the right of the chain-dashed line the flow is underexpanded.
(These regimes were also marked for each dataset in figure 1.) It appeared from the
boundaries in figure 3 that the resonance could take place when a shock existed
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Figure 4. Tone frequency variation for nozzle 8T1 (Dt = 0.25, De = 0.302, L = 0.512):
�, data from a small jet facility; e, data from a large jet facility.

within the divergent section or when the flow was in the early stage of overexpansion.
However, it will be shown later that one-dimensional analysis grossly underpredicts
the location of the ‘dotted’ boundary, and the resonance always involves a shock
within the divergent section.

Frequency data for nozzle 8T1 are shown in figure 4. The band of data on the
right again represents screech. Here, three stages are observed for the transonic tones.
There are overlaps between stages where peaks at both frequencies occur in the time-
averaged spectrum; the frequencies are not exact harmonics of each other. The square
and circular symbols represent data taken in two jet facilities with the same nozzle.
It is clear that the transonic tones are independent of the facility and characteristic
of the nozzle. Occasionally, tones would occur when the flow was entirely subsonic;
one such data point is shown to the left of the dashed vertical line. These appeared
to be related to facility resonance or other unknown sources and are ignored for the
rest of the paper. Most nozzles exhibited two stages of the transonic resonance. Stage
(1) was typically persistent and involved the loudest tones. Data for only this stage
were shown in figure 1. (It is worth mentioning here that often a minute change in
Mj would not change fN; thus, on a finely resolved abscissa, the frequency varied in
a step-like rather than continuous fashion within a given stage.)

Figure 5 shows sound pressure level spectra for nozzle 9T1. Data for three values
of Mj are shown, there being a pair of traces at each Mj . The dotted lines represent
the case with two ‘tabs’ installed at the nozzle exit (Samimy, Zaman & Reeder 1993).
While screech is eliminated by the tabs (at Mj = 1.58), the transonic tones at the two
lower Mj are affected just slightly. In fact, the small effect (somewhat lower frequency
and amplitude) could be due to blockage by the tabs. It was noted that a relatively
large tab (e.g. the end of a flat-headed screwdriver inserted sufficiently into the flow)
would eliminate the tone completely. But this apparently occurred due to a shift of
the choke location to the exit, when the nozzle acted like a convergent one. Results
of figure 5 suggest that the origin of the tone under consideration is internal to the
nozzle, and this is confirmed by the boundary layer trip effect.
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Figure 5. Sound pressure level spectra for nozzle 9T1 (Dt = 0.25, De = 0.261, L = 0.236). Three
pairs of spectra, staggered by 40 dB, are for the indicated values of Mj (ordinate pertains to the
pair at the bottom). Solid curves, normal operation; dotted curves, with two tabs at the exit.

3.1.1. Effect of boundary layer trip

Sound pressure level spectra, with and without boundary layer trips, are shown
in figure 6 for nozzle 4T1. Data for three values of Mj are presented in the same
manner as in figure 5. The trip was composed of four 1

2
in. wide pieces of adhesive

tape (approximately 0.003 in. thick) placed close to but sufficiently upstream of the
throat so that there was no change in the minimum area. These were spaced equally
around the periphery. It can be seen that, at the highest Mj , there is no effect on
screech. This is expected because screech occurs due to a feedback loop external to
the nozzle. However, the trip essentially eliminates the transonic tones in this case, at
the lower values of Mj . A similar result was shown for nozzle 3T1 (Zaman & Dahl
1999) as well as for nozzle 7T1 (figure 2).

The effect of boundary layer trip location was explored further with nozzle 3T1.
The observations were only qualitative but narrated here because of their practical
significance. (A robust engineering solution for the suppression of the resonance
should require elaborate testing that was considered outside the scope of this study.)
Four epoxy beads, each approximately 0.08 in. across and 0.005 in. high, were placed
at a given axial location spaced equally on the internal wall. The tone amplitudes
were measured at two operating conditions: Mj = 1.0 (fN = 1.55 kHz) and Mj = 0.89
(fN = 3.6 kHz). When the beads were located 0.3 in. upstream of the throat the
amplitudes reduced by about 80%; however, small but clear peaks remained in the
spectrum. Almost a complete suppression was achieved when the beads were located
about 0.3 in. downstream of the throat. At the latter location, however, the effect
was inconsistent at other values of Mj (tone reappeared). On the other hand, when
the beads were moved farther downstream the effectiveness diminished rapidly. It
appeared that the trip needed to be placed close but prior to the location of the shock
in order to achieve the best suppression. Furthermore, during these as well as the
temperature-sensitive-paint (§ 3.3) experiments, it appeared that the resonance was
more susceptible to azimuthal non-uniformity of the trip. That is, the same roughness
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Figure 6. Sound pressure level spectra as in figure 5 for nozzle 4T1 (Dt = 0.95, De = 1.0,
L = 0.866): solid curves, smooth interior of nozzle; dotted curves, tripped boundary layer.

placed at a few azimuthal locations rather than uniformly over the periphery appeared
to be more effective in the suppression. It was also noted that the trip affected the
amplitude but seldom the frequency of the tone. The amplitude was indeed sensitive
to the surface texture near the throat. For example, when the trips were removed,
smudges inadvertently left behind would affect the tone and the amplitude would not
reproduce exactly.

3.2. Frequency scaling

Parametric dependence of the frequency of the transonic tone is now addressed. At
first, data for only stage 1 is considered. Figure 7 shows data for the ‘trimmed’
cases. The length of the divergent section L is varied while θ remains approximately
constant. The frequency data have been non-dimensionalized as fNL/a0, where a0 is
the speed of sound in the ambient (a constant). First, it is noted that in each case,
there is approximately a linear variation of frequency, with the exception that for
small values of L there is a clear departure from linearity at either end of the curve.
Ignoring this departure, there is a good overall collapse of all the data. Thus, it is
apparent that the resonant frequency, to a first approximation, simply scales inversely
as the length of the divergent section. This observation, however, conflicts with the
trend of another set of data shown in figure 8. Non-dimensionalized frequencies are
shown, again, for varying L while De is held constant (nozzles 1–5 of table 2). It can
be seen that the curves are close together for small values of L but there is very large
departure with increasing L. This posed a stumbling block in the understanding of
the frequency scaling for a long time. It was not clear if the departure for large L
was due to a ‘staging’ behaviour or some other factor.

After inspection of many sets of data, it became apparent that the frequency
curves had a systematic dependence on the parameter θ. In figure 8, θ decreases
with increasing L. The slope of the frequency curve steepens with decreasing θ. In
figure 7, for small values of L, θ also decreases somewhat due to the fairing near
the throat. A somewhat steeper slope of the frequency curves can also be noticed
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Figure 7. Frequency variation (stage 1) for nozzle 2T2 (Dt = 0.304) trimmed to different lengths:e, L = 1.5; �, 1.3; �, 1.1; C, 0.9; 4, 0.75; O, 0.6; B, 0.495.
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Figure 8. Frequency variation (stage 1) for nozzles of constant throat and exit diameters (Dt ≈ 0.3
and De = 0.4) but different throat-to-exit length L (table 2). 4, 3.0 (nozzle 1); C, 1.5 (2); �, 0.75
(3); �, 0.48 (4), e, 0.375 (5).

for the smallest values of L. Finally, data for varying De, with L held constant, are
shown in figure 9. Increasingly steeper slope can be observed for decreasing De that
is accompanied by decreasing values of θ. One might try other parameters in the
non-dimensionalization, e.g. diameter as a length scale, but it is clear that no other
combination would readily account for the changes in the slopes. The change of slope
apparently relates to differences in the rate of divergence suffered by the flow. An
average measure of the latter is given by the parameter θ. The θ-dependence of the
frequency curves is discussed shortly.

First, the staging behaviour is examined. Four examples of the frequency variation
over the full range of Mj are shown in figure 10(a–d ). In each part, the dimensional
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Figure 9. Frequency variation (stage 1) for nozzles of constant Dt and L but different De (table 2).e, 0.5 (nozzle 7); �, 0.4 (3); �, 0.35 (2, trimmed); C, 0.32 (6).

data are shown on the top. There are three stages in figure 10(a), two each in
figures 10(b) and 10(d ), and only one in figure 10(c). Between cases (b) and (d ) there
is an order of magnitude difference in the frequencies, commensurate with an order
of magnitude difference in nozzle dimensions. After inspection of all data it becomes
apparent that stage 1 is indeed the fundamental in the resonance, stages 2 and 3
being the next odd harmonics. That is, with decreasing Mj , at the left end of stage
1, there is an increase in the frequency by approximately a factor of 3 to begin stage
2. Similarly, at the left end of stage 2, the onset of stage 3 involves a jump by a
factor of about 5/3. This becomes clear from the non-dimensional data shown at the
bottom of each figure (ordinate on right), with appropriate ‘stage correction’. That is,
frequencies in stages 2 and 3 have been divided by factors of 3 and 5, respectively.
In this way, the best collapse of all stages to a single curve was achieved. There is
a perceptible discontinuity between stages 1 and 2; however, stages 2 and 3 in (a)
blended quite well.

That the higher stages are odd harmonics of the fundamental follows acoustic
resonance characteristics of the divergent section (without flow). For a conical duct
‘driven’ from the smaller end and open at the other, a fundamental acoustic resonance
would correspond to a standing one-quarter wave, with higher ‘stages’ occurring at
only the odd harmonics. The resonant frequencies can be calculated as (see e.g. Morse
1948)

fm =
a0

4lp

√
m2 +

8lp
π2x0

, m = 1, 3, 5 . . . , (1)

where

lp = L+
4De
3π

, x0 =
Dt

2 tan θ
.

The fundamental frequencies for the four cases of figure 10, given by equation (1),
are: (a) 7.80, (b) 0.70, (c) 3.91and (d ) 2.28 kHz. While the calculated value lies within
the ranges of frequencies in (b) and (c), it is outside the ranges in (a) and (d ). Note
that the acoustic resonance frequencies are constants. For the subject phenomenon,
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Figure 10. Frequency variation (full range) for four different nozzles. Dimensional data (�) are at
the top, corresponding non-dimensional data (4) with ‘stage correction’ are at the bottom; numbers
in parentheses are stages. (a) Nozzle 2T2, (b) 5T1, (c) 6T2, (d ) 1T1.

frequency varies within a stage. Thus, the transonic tones are not merely ‘acoustic
resonance’ excited by the flow. The flow field, which is very complex, comes into play.
Nevertheless, the occurrence of only the odd harmonics suggests that the underlying
mechanism must be similar to that of acoustic resonance. This is addressed further
later in the text.

In order to examine the θ-dependence, fNL/a0 versus Mj curves are constructed
for all (single round) nozzle cases in the same way as in figure 10. A total of seventeen
cases, from tables 1 and 2 and the trimmed cases of figure 7, are included in this
exercise in an effort to find a correlation. The frequency variation in each stage is
assumed to be linear. The slopes are estimated by drawing straight lines through the
data in each stage. (The data on the ends of a stage departing from linearity are
ignored in this process. A few cases with very small θ have not been included since
a linear part in the curve is not readily discernible.) Simultaneously, the intercepts
at Mj = 1 are also obtained. When all the data are plotted a consistent dependence
on θ emerges. The dependence of the slopes can be seen clearly in figure 11. Data
for stage 1 are shown by the triangular symbols while those for stages 2 and 3 are
shown by the circular symbols. In a given stage, the slopes vary inversely as θ. The
intercepts also exhibit an inverse functional dependence on θ, as shown in figure 12.
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Figure 12. Intercepts at Mj = 1 corresponding to the cases of figure 11.

The curves in figures 11 and 12 are least-squares-fits through the data for the round
nozzle cases (open symbols).

From the fitted curves the following equation is obtained, with θ expressed in
degrees:

fNL

ma0

= C1(θ) + C2(θ)(Mj − 1), m = 1, 3, 5 . . . , (2)

where C1(θ) = 0.298θ−0.370, C2(θ) = 0.952θ−1.029 for stage (1), and C1(θ) = 0.221θ−0.325,
C2(θ) = 0.363θ−0.8375 for stage (2).
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The frequency for stage 3 (m = 5) is also given by the equation for stage 2. The
value of Mj where the jump from stage 1 to 2 takes place also appears to depend on
θ and is given by curve-fit, (Mj)1–2 = 1.036θ−0.157. These correlation equations would
allow one to estimate the resonant frequency at any Mj simply from the dimensions L
and θ. Recall that the amplitude of the resonance is not well defined and is sensitive
to e.g. the surface finish of the nozzle’s interior. Thus, no attempt is made to correlate
the amplitudes.

The solid data points in figures 11 and 12, identified in the captions, are for
rectangular and co-annular nozzles. It is obvious that equation (2) also predicts these
data quite well. A discussion of this is deferred to § 4.2.

3.3. Steady-state internal flow characteristics

Time-averaged internal flow structure is discussed in this section based on wall-
temperature and centreline pressure distributions. These steady-state results should
provide a clearer perspective of the internal flow field with and without the resonance,
for the more serious reader with a close interest in related research areas. A reader
with only general interest may consider a cursory perusal, review figures 13–17, and
move on to § 3.4.

3.3.1. Wall temperature

The temperature-sensitive-paint technique was used for these measurements. The
paint was sprayed on a ‘sector’ of the interior of the divergent section. The painted
strip extended from about the throat to the exit, and the layer was initially about
0.001 in. thick. The non-uniformity in the layer was enough to trip the boundary layer
for some of the nozzles, resulting in a ‘dulling’ of the tones. The painted surface had
to be polished in order to get the sharp tones back. The picture of the painted strip
was taken from outside with a CCD camera. Under filtered blue light (460 nm) the
emission intensity from the paint responded to the static temperature. Two images
were taken – one without flow and another with flow. The data were post-processed
by normalizing the level in each pixel for flow with the corresponding no-flow level.
Temperature differences, as small as a fraction of a degree, could be discriminated by
the technique (Liu et al. 1997).

Figure 13 shows images of the temperature distribution for nozzle 3T2 at different
Mj . The pictures on the left are for a tripped boundary layer (resonance suppressed).
The pictures on the right are the corresponding cases with a smooth interior (resonance
on). Bands of colour indicating regions of temperature gradients are observed. For
the tripped case, strong gradients are observed approximately in the middle of the
divergent section. The sharp edge on the right of the dark blue region apparently
indicates the location of the shock. In general, lower temperatures are expected in
regions of high-speed attached flow while higher temperatures are expected past a
shock and with boundary layer separation. With resonance, the right column, the
distributions are seen to change significantly. At Mj = 0.86, 1.06 and 1.19, a warm
band (in red and yellow) is observed. This apparently corresponds to a separation
bubble. Note that these three Mj cases represent resonance in stage 1 while at
Mj = 0.67 resonance in stage 2 takes place (figure 3).

Temperature profiles, along an axial line in the middle of the visualized sector, are
shown in figures 14 and 15 for the tripped and untripped cases, respectively. Some
of the profiles are annotated for easy reference. Note that x∗ represents the throat
location, so that 1.0 on the abscissa represents the nozzle exit. Let us first examine
the trends in figure 14. The temperature is seen to decrease with increasing distance
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Figure 13. Interior wall temperature distribution for nozzle 3T2 (Dt = 0.3, De = 0.4, L = 0.75), at
the indicated values of Mj . (a) for tripped boundary layer, (b) for smooth interior.

from the throat until at a certain downstream location a relatively abrupt increase
takes place, at the location where the ‘foot’ of the shock intersects the wall. Upstream
of this, the flow is supersonic and the Mach number gradually increases from unity
at the throat to some higher value as the shock is approached. The increasing Mach
number is accompanied by decreasing static temperature.

The static temperature, however, can be calculated to be much lower than the
recorded temperatures (∆ (temperature) represents static temperature relative to am-
bient temperature). For example, for a Mach number of 1.2, likely in many of the
cases of figure 14, ∆ (temperature) would be about −35 ◦C. This contrasts with the
measured values, which are no lower than −7 ◦C. This difference is due to the fact
that the data represent ‘wall temperature’ that ideally should be equal to the total
temperature (see e.g. Schlichting 1979). In practice, however, there are radiation and
conduction losses and the wall temperature is always less than the total temperature.
For a thermal boundary layer (Crocco–Buseman equation, see Schlichting 1979), this
is accounted for by a ‘recovery factor’. With the assumption of a constant recovery
factor, it follows that the relative variation in wall temperature is the same as that in
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Figure 15. Axial variation of wall temperature for the cases with smooth interior of figure 13
(with resonance).

core static temperature, although the magnitude of the former is only a fraction of
the latter.

Since the core static temperature is proportional to the static pressure, it follows
that the measured temperature profiles are similar to the static pressure profiles. In
fact, the overall trends in the temperature profiles of figure 14 bear striking similarity
to static pressure profiles reported by e.g. Anderson (1982) and Hunter (1998). The
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analysis.

static pressure also drops with increasing distance from the throat and then rises
abruptly past the shock. In the cited references the shock location was defined by
the location of minimum static pressure before the abrupt rise. A similar criterion is
applied here to determine the shock location from the temperature minima.

Shock locations for the tripped case (figure 14), obtained by the stated criterion,
are plotted in figure 16 (circular data points). The abscissa is logarithmic, and unity
on the ordinate represents the nozzle exit. It can be seen that the shock moves
downstream with increasing Mj , and reaches the exit at Mj ≈ 1.55. Also shown in
figure 16 is the theoretical prediction for the shock location based on one-dimensional
analysis (solid curve between the dashed and dotted vertical lines). It becomes clear
that the shock actually resides within the nozzle at pressure ratios (or Mj) much
higher than that predicted by one-dimensional analysis. The ‘dotted’ boundary in
reality is at Mj ≈ 1.55 instead of 0.955. A similar inference is made from published
static pressure data, for example from Hunter’s (1998) rectangular nozzle data shown
by the solid diamond symbols in figure 16, as well as from the classical ‘Stodola
experiment’ described by Anderson (1982) for a circular nozzle. (The dimensions of
Hunter’s nozzle were such that the predicted flow regime boundaries were practically
identical to those in figure 16 for nozzle 3T2.)

Referring back to figure 15, it can be seen that, with the onset of resonance, the
temperature distributions are no longer orderly. The shock location (temperature
minimum) at a given Mj has moved upstream. However, a second temperature
minimum occurs downstream. For example, at Mj = 1.06, the shock has moved from
0.35L (figure 14) to 0.2L (figure 15); this shift can also be seen in figure 16 from
the square data points. Besides the temperature minimum at (x − x∗) = 0.2L, there
is another minimum close to the exit. With the assumption that the latter is the
location of boundary layer reattachment, one infers that a separation bubble, in a
time-averaged sense, exists under the resonant condition. The bubble is long at the
three higher Mj cases that involve resonance in stage 1. In comparison, the second
temperature-minimum occurs further upstream at the three lower Mj cases that
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involve resonance in stage 2. Thus, a shorter separation bubble is involved in stage
2 while in stage 1 the bubble length is comparable to L′, the distance of the nozzle
exit from the shock. (The wall temperature for a few cases in figure 15 is somewhat
in excess of the ambient temperature. This is thought to be due to dissipation within
the separation bubble.)

The data presented in this section clarify an aspect of the resonance. Initially, from
the data in figures 1, 3 and 4 it was thought that the resonance might be possible even
without a shock inside the divergent section (the resonance extended well into the
‘overexpanded’ regime predicted by one-dimensional analysis). The results discussed
here make it amply clear that for the subject flow a shock still resides inside the
nozzle. In fact, it is apparent from accumulated evidence that the presence of a
shock approximately within the upstream half of the diverging section is a necessary
condition for the occurrence of the resonance.

3.3.2. Centreline pressure distributions

Static and total pressure measurements were carried out in nozzle 5T1 with a
Pitot-static probe. The outer diameter of the probe was d = 0.094 in. The large size
of the nozzle enabled the measurements to be taken without significant probe inter-
ference. The data were obtained on the centreline of the nozzle starting immediately
downstream of the throat. Two flow conditions were chosen: (a) Mj = 0.55 yielding
a resonant frequency of 755 Hz (stage 2), and (b) Mj = 0.75 yielding a resonant
frequency of 385 Hz (stage 1); the frequency data for this nozzle have been shown in
figure 10(b).

The static pressure taps were located about 11d from the tip of the probe. In
supersonic flow with a streamwise pressure gradient there are ambiguities in static
pressure measurements. In particular, the location of the measured pressure relative
to the probe tip is subject to question and depends on the precise geometry of the
probe. It was assumed that the free-stream static pressure (p1; in standard normal
shock notation, see e.g. Ames Staff Report 1953) was measured at the location of the
taps. The Pitot probe, on the other hand, yielded the total pressure downstream of the
probe-induced shock (pt2). The Rayleigh–Pitot formula was applied to calculate shock
Mach number (M1) that in turn yielded the free-stream total pressure (pt1). These
pressure distributions, denoted by pt(= pt1) and ps(= p1), are shown in figure 17 for
the two operating conditions. These data are included in spite of some measurement
ambiguities because they describe the basic state of the flow for the two operating
conditions for which unsteady flow data are presented in the next subsection. Note
that most of the data are for the subsonic regime downstream of the shock where the
measurements are free from the stated ambiguities.

The trend in the static pressure data of figure 17 is similar to that observed from
wall-pressure data, as discussed earlier in this subsection. The shock location, denoted
by the minimum before the sharp rise in the pressure, is at x/L = −0.9 and −0.8 at
Mj = 0.55 and 0.75, respectively (x is referenced to the nozzle exit). The total pressure
data exhibit a drop-off near the location where static pressure rises. A close inspection
reveals some discrepancy. Consider the curves for Mj = 0.75 (circular symbols). It is
reasonable to assume that the total pressure drop (over x/L = −0.9 to −0.75) takes
place over the shock. The drop across the shock (pt2/pt1 = 0.97) would indicate a
shock Mach number (M1) of about 1.35. However, the ratio of static pressure rise
over the same distance (p2/p1) is about 1.5. The latter would indicate a shock Mach
number of 1.2. The source of this discrepancy is not completely clear. However, it
is thought to be due to the fact that the shock is not steady. As we will see, there
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Figure 17. Centreline variations of (a) total pressure and (b) static pressure for nozzle 5T1
(Dt = 2.565, De = 3.5, L = 4.2): �, �, Mj = 0.55 (fN = 755 Hz); e, •, Mj = 0.75 (fN = 385 Hz).

are large changes in the shape and strength of the shock over the oscillation cycle.
Thus, normal shock relationships may not apply. In fact, when the boundary layer
was tripped to suppress the resonance, yielding a steady shock, the drop in total
pressure was found to be much less. The shock Mach number calculated from the
total pressure then agreed closely with that obtained from the static pressure rise. A
similar observation was also made for the other Mj case.

3.4. Unsteady flow characteristics

The unsteady flow characteristics were explored with a miniature pressure transducer
for nozzle 5T1 for the two flow conditions stated in the previous section: Mj = 0.55
(755 Hz; stage 2), and Mj = 0.75 (385 Hz; stage 1). The transducer was mounted on
a 9 in. long support that telescoped from a root diameter of 0.25 in. to the sensor
diameter of 0.063 in. It was inserted straight into the flow (as with a Pitot probe)
from a streamlined support mounted on the probe traversing mechanism. The probe
essentially responded to unsteady total pressure. A 1

4
in. (B&K) microphone, placed

just outside the flow and near the lip of the nozzle, provided a reference signal for
the measurements.

Radial profiles of the phase (i.e. ‘mode shape’ at the resonant frequency), are shown
in figure 18. The data are for a streamwise location just downstream of the nozzle exit.
The phase is measured through spectrum analysis of the transducer signal, relative
to the fixed microphone signal. Ignoring some details, it is clear that the resonance
at either stage involves axisymmetric fluctuation. As reported by Zaman & Dahl
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Figure 18. Radial profiles of the phase at x/De = 0.25 for nozzle 5T1: �, Mj = 0.55
(fN = 755 Hz); e, Mj = 0.75 (fN = 385 Hz).

(1999), cursory measurements with several other nozzles and operating conditions
also indicated axisymmetric shapes. The rectangular nozzle case included in figure 1
also involved a symmetric shape.

The phase-averaged amplitude of the unsteady total pressure was measured at
various axial locations on the nozzle centreline. At each location, the data were
recorded for 39 time steps (phases) covering about 1.2T , T being the period of the
resonance. Sample data for the flow inside the nozzle are shown in figures 19(a)
and 19(b) for Mj = 0.55 and 0.75, respectively. The ordinates are approximately in
percentage of the plenum pressure. One finds that quite large fluctuations take place
– as much as ±20% in stage 1 at Mj = 0.75 in (b). Thus, the nozzle is subjected to
very large unsteady aerodynamic loads under the resonant condition.

The data in figure 19 cover an axial range from x/L = −0.6 to about the nozzle
exit. Upstream of this range, the amplitudes drop rapidly. There, the small amplitudes
are contaminated by probe interference, especially when the probe is near the shock
(evident from changes in the reference signal). Thus, the measurements could not be
carried out in those regions. In each of figures 19(a) and 19(b), the waveforms are
complex. They are far from sinusoids and there is large harmonic distortion. While
the processes leading to these waveforms and the details of the unsteady shock motion
remain unclear, an important aspect of the flow becomes apparent from these data.
There is relatively little phase shift within the measurement range, especially for stage
1 in figure 19(b). The phase shift for stage 2 (figure 19a), up to about x/L = −0.31, is
also small. The lack of phase shift indicates that these are standing waves within the
nozzle. If the data in figure 19(b), for example, represented travelling wave and the
x-range covered corresponded to 1

4
wavelength, the curves marked ‘1’ and ‘0’ would be

separated by t/T = 0.25. This is not the case and for a portion of the period the curves
are bunched together. The standing wave characteristics are further discussed in § 4.3.

4. Comparison with past experiments and numerical simulation results
4.1. Past experiments

Past experiments that showed a similar unsteady flow through nozzles at ‘transonic
conditions’ are discussed here. Most of these observations are for rectangular geom-
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Figure 19. Phase-averaged total pressure variations with time at the indicated x-locations; time is
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Data are for nozzle 5T1: (a) Mj = 0.55 (fN = 755 Hz); (b) Mj = 0.75 (fN = 385 Hz).
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etry. Corresponding frequency characteristics are compared with the present results
(equation (2)) in § 4.2.

Bogar, Sajben & Kroutil (1983): A series of experiments was conducted about
twenty years ago for transonic flow through a diffuser by M. Sajben and coworkers
(Chen et al. 1979; Sajben et al. 1980; Bogar et al. 1983). They studied a ‘low-frequency,
self-excited oscillation’ occurring in the diffuser. The phenomenon appeared to be
the same as the one addressed here. Their flow geometry involved ‘one-half’ of a
two-dimensional diffuser. That is, the floor was flat, the upper wall was convergent–
divergent and the two sidewalls were parallel. The throat height (H) was 1.73 in. and
the 15 in. long diverging section ended with a height of 2.64 in. Following the diverging
section there was a parallel section (constant height) of 10 in. length. Experiments were
also conducted by extending the parallel section another 28 in. Detailed measurements
of unsteady wall pressure with accompanying flow visualization of the unsteady shock
were conducted.

They observed multiple spectral peaks in the pressure fluctuation at low supply
pressures but a single, strong peak at higher supply pressures. They inferred that the
multiple peaks at low supply pressures were longitudinal duct resonance (fundamental
and odd harmonics). However, the frequency of the peak at the higher pressure
remained invariant for both duct lengths (L/H = 14.4 and 30.5), and thus they
inferred that it ‘did not follow acoustic predictions’. Nevertheless, data for the smaller
length (their figure 10) did exhibit an increasing frequency with increasing Mj (Mj

inferred from cross-reference to their figure 3). The overall frequency characteristics,
including the observation that odd harmonics prevailed at lower pressures, agreed
with the present results.

It was not clear why the additional length after the diverging section did not affect
the frequency. It is possible that the boundary layer bleed employed just downstream
of the diverging section imposed a length scale that remained invariant. Another
significant difference is the fact that they had a boundary layer trip at the inlet
but the resonance took place nevertheless. Again, there was a boundary layer bleed
following the trip. Moreover, the trip was located quite far upstream (x/H = −6.93),
possibly explaining the ‘ineffectiveness’ of the trip.

Hunter 1998: In this work, steady state results were obtained for the internal
flow of a rectangular C–D nozzle (see also Hunter 1993). The nozzle had a throat
area of 4.317 in.2, an expansion ratio of 1.797 and a constant width of 3.99 in.
While analysing the internal shock structure, the author noted flow unsteadiness at
relatively low operating pressures. During a schlieren flow-visualization experiment an
audio signal from a microphone was recorded simultaneously with the video records.
The author collaborated by performing a preliminary analysis and providing these
records. Further analysis of the audio signal revealed spectral peaks very similar to
those observed in the present study. This is shown in figure 20. The single peak
at Mj = 0.71 is apparently due to stage 1 resonance. The frequency increases with
increasing Mj and a small peak is detectable at Mj = 0.96. At the lowest Mj , spectral
peaks, apparently for both stages 1 and 2, are present.

The schlieren video records provided by C. A. Hunter allow insight into the unsteady
shock motion associated with the resonance. Sample video records for the case of
Mj = 0.71 are shown in figure 21. The flow is from left to right, and the shock
can be seen downstream of the throat. The three pictures are at arbitrary times and
chosen to capture the shock at different phases within the oscillation cycle. The shock
is complex, with a ‘lambda foot’, and changes in shape quite drastically within the
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Figure 20. Sound pressure spectra from the experiment of C. A. Hunter (1998).

cycle. Corresponding video records at Mj < 0.57 (stage 2) indicated a single shock
closer to the throat. At Mj = 0.57, the shock involved multiple fronts, apparently
commensurate with the multiple peaks in the spectra. On the other hand, at Mj = 0.96,
a clean and well-defined shock with a ‘lambda foot’ occurred farther downstream.
These results aided the discussion of possible mechanism of the phenomenon, in § 5.1.

Other investigations: Another past work, that of Meier (1974), merits comment. An
unsteady flow oscillation in a two-dimensional C–D nozzle was reported. Vivid flow
visualization pictures, showing the shock motion and boundary layer separation, over
a cycle of the oscillation were presented. A close look at the results revealed that the
boundary layer separation occurred on one wall. This contrasts with the ‘symmetric’
oscillations noted in the present experiment (§ 3.4). It is not clear if the observed
unsteady flow is similar in origin but may suggest that non-symmetrical modes of the
transonic resonance are possible.

In connection with research on flow metering by ‘venturi nozzles’, unsteady quasi-
periodic flows were reported in recent publications (Lavante et al. 2000; Ishibashi
& Takamoto 2001). In particular, the latter work reported axial profiles of ‘recovery
temperature’ inside the divergent section of the nozzle that clearly exhibited standing
waves. This is discussed further in § 4.3.

4.2. Frequency scaling for rectangular and co-annular nozzles

Data from three rectangular configurations have been discussed so far: nozzle 6T1,
C. A. Hunter’s, and that of Bogar et al. (1983). In all three cases the divergence of the
nozzle was in one lateral direction while the walls in the other direction were parallel.
The frequency characteristics of these as well as the co-annular nozzle (7T1) are now
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Figure 21. Schlieren pictures of the internal shock structure for the Mj = 0.71 case of figure 20
(Hunter 1998), for three arbitrary times.

compared with equation (2), referring back to figures 11 and 12. For the comparison,
an equivalent half-angle of divergence, θeq , is defined as follows. With Ht and He

denoting the heights at the throat and exit, respectively, equivalent diameters Dte and
Dee are first determined from the areas (Ht +He)

∗Ht/2 and (Ht +He)
∗He/2. The value

of θeq is then obtained similarly to that in the circular case (= tan−1(Dee − Dte)/2L).
With θeq defined this way, the rate of flow divergence with increasing streamwise
distance becomes comparable to that for a circular case where the flow diverges
circumferentially.

For C. A. Hunter’s data (figure 20), the average slope of fL/a0 versus Mj was
calculated from the spectral peaks at Mj = 0.57 (488 Hz) and Mj = 0.96 (825 Hz). The
intercept at Mj = 1 was obtained by extrapolation. The same procedure was followed
to obtain approximate values of these quantities from Bogar et al. (1983; from their
figures 10 and 3). These results, as well as data for the rectangular and co-annular
nozzles of the present experiment, have been shown in figures 11 and 12 by the solid
symbols. The index m = 1 (equation (2)) yielded the best match. This, together with
an inspection of the raw frequency data (no sign of a further frequency jump with
increasing Mj), indicated that the data for all four cases belonged to stage 1.
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The results compared from the two past works are based on quite limited data.
Overall, however, it is clear that the slopes (figure 11) and intercepts (figure 12) for
all rectangular cases are well represented by equation (2). Data for the co-annular
case exhibit some departure. Here, it is possible that the inner flow exerts an influence
on the shock structure within the outer annulus. Nevertheless, the departure is small.
Thus, equation (2) appears to be applicable to a wide variety of nozzle geometries.
It is worth mentioning here that in a recent experiment, transonic tones from even
a complex mixer–ejector nozzle could also be successfully predicted by equation (2)
(Zaman 2002). Once again, it should be noted that the agreement with equation (2)
is achieved only with θeq as defined. (If θ were obtained from equivalent diameters
based on the exit and throat areas, the data would scatter. The incompatibility of
the latter definition may be appreciated from the fact that θ would increase with
increasing span for a given L, and in the limit of infinite span θ would approach 90◦.)

4.3. Numerical simulation

Key results obtained from a companion numerical study are discussed here. In
consideration of an excessive length of the paper, full details of this study have been
presented separately (Loh & Zaman 2002).

The simulation was conducted for nozzle 3T2 using the space–time ‘conservation
element and solution element’ (CE/SE) method developed by S.-C. Chang and coin-
vestigators (Chang, Wang & Chow 1999; Loh, Hultgren & Chang 1998). A modified
axisymmetric two-dimensional CE/SE ‘inviscid’ code was used here. The computa-
tional domain started at the inlet of the convergent section and extended over a
rectangular subdomain outside the nozzle. The unstructured grid contained about
110 000 triangular cells. The computation was started with the entire flow at rest and
with the desired plenum pressure applied at the inlet boundary. A no-slip boundary
condition was imposed on the nozzle wall. The calculation was carried out until a
‘limit-cycle’ oscillation in the flow field was reached. At this state the flow property at
a given point in the computational domain would undergo a quasi-periodic oscillation
with varying time. Spectrum analysis would exhibit sharp peaks similar to that seen
in the experimental data.

The computation was first carried out for Mj = 0.90 and the oscillation frequency
agreed with the experimental data very well. The fact that an oscillation took place,
and that the frequency matched the data so well, prompted further investigation.
The computation was performed for four more pressure ratios. The flow oscillation
frequencies obtained for these conditions have been compared with the experimental
data in figure 3. It can be seen that not only is the trend of increasing frequency with
increasing Mj observed, but also the stage jump is captured quite well. For Mj = 0.90
(stage 1), numerical schlieren pictures for the internal flow are shown in figure 22. The
three phases, approximately equally spaced within the oscillation cycle, were chosen
to roughly correspond to the three schlieren pictures of figure 21. Even though the
experimental data are for a rectangular geometry while the computation is for an
axisymmetric case, the resemblance in the unsteady shock motion is unmistakable.

It is quite clear that the essence of the phenomenon is captured by the computation.
Note that it is an ‘inviscid’ calculation, i.e. viscous terms are set to zero in the governing
equations, with a no-slip boundary condition on the wall. Thus, the computed flow
involved boundary layer growth due only to ‘numerical viscosity’. Boundary layer
separation following the shock can be observed in figure 22. However, one may
not expect that the details of the separated flow and the separation bubble would
be captured faithfully by such a computation. On the other hand, users of the
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Figure 22. Numerical schlieren pictures from the computational study for nozzle 3T2, Mj = 0.90
(stage 1).

CE/SE method have demonstrated its ability to capture shock structure relatively
faithfully. Thus, one may infer that the exact details of the separated boundary layer
are unimportant and it is the shock and its unsteadiness that are critical in the
phenomenon under consideration.

The r.m.s. amplitudes of the pressure fluctuation on the centreline are shown in
figures 23(a) and 23(b) for stage 2 and stage 1, respectively. Nodes and antinodes
characteristic of standing waves are clearly observed. Here it is instructive to recall
the expected standing wave patterns for (no-flow) acoustic resonance of the divergent
section (§ 3.2). The fundamental resonance should correspond to a standing one-
quarter wave. This would involve a pressure node at the exit and an antinode near
the throat. The next ‘stage’, the third harmonic, should also have a node at the exit
and an antinode near the throat; however, there should be an additional pair of a
node and an antinode in between. The nodes and antinodes for velocity fluctuation
would be the reverse, i.e. a pressure node would correspond to a velocity antinode
and vice versa.

It is clear from figure 23 that the resonance in the present case involves standing
waves with a similar nodal pattern to that described for the no-flow resonance. Recall
from the discussion of figure 19 that aspects of standing waves were noted in the
present experiments but the nodal pattern could not be measured with confidence
because of probe interference. Referring back to § 4.1, it is noteworthy that in ex-
periments with venturi nozzles Ishibashi & Takamoto (2001) also observed similar
standing waves. The time-averaged ‘recovery temperature’ inside the divergent section
of the nozzle, under conditions of unsteady flow, clearly exhibited the presence of
one-quarter, three-quarter and even five-quarter standing waves. (In a private com-
munication, Dr Ishibashi confirmed that the flows were accompanied by the emission
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Figure 23. Numerical simulation results for pressure fluctuation amplitude (r.m.s.) along the
centreline of nozzle 3T2. (a) Mj = 0.60 (stage 2), (b) Mj = 0.90 (stage 1).

of tones. Unfortunately, frequencies were not measured that would have allowed a
comparison with prediction from equation (2).)

A difference of the present flow with the no-flow acoustic resonance is that the
upstream antinode occurs downstream, near the average location of the shock, rather
than at the throat. Thus, the resonance here involves the volume of flow from the
shock to the nozzle exit. One also finds that the node near the nozzle exit occurs some
distance downstream. This is also the case for no-flow resonance, which necessitates
a ‘length correction’ in equation (1). In any case, the presence of the standing waves
confirms that the basic mechanism of the transonic resonance must be similar to that
of the no-flow acoustic resonance; the physical processes are addressed in the next
section.

5. Concluding remarks
5.1. Possible mechanism

A full understanding of the phenomenon and, hence, an analytical formulation for
prediction of its characteristics remain incomplete. However, from the accumulated
evidence the following may be said:

The phenomenon requires a shock to be present in the diverging section. The shock
is followed by boundary layer separation. Farther downstream there is indication of
reattachment and, on a time-averaged basis, there appears to be a separation bubble.
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Figure 24. Schematic of likely flow fields: (a) stage 2; (b) stage 1.

Probable flow fields are sketched in figure 24 for the two conditions of figures 17–19.
Wall temperature results (figures 14 and 15) together with observations of Bogar
et al. (1983) and Hunter (1998) aided in constructing these flow fields. A smaller
separation bubble is suggested, and a shock occurs just downstream of the throat, at
the lower Mj . At the higher Mj , with the onset of stage 1, it is likely that the shock
has developed a ‘lambda foot’ that would explain the upstream shift of the ‘shock
location’ seen in figures 15 and 16.

The unsteadiness of the shock, apparently stimulated by the unsteadiness of the
separated flow, serves as a source of perturbation. Two possibilities may be considered.
(i) The separated boundary layer downstream of the shock supports instability wave
growth. The downstream-propagating instability (vorticity) wave, upon interaction
with the discontinuity at the nozzle exit, produces a feedback wave. This travels
upstream at acoustic speed through the subsonic flow and, upon reaching the foot
of the shock, completes the feedback loop. In the earlier stage of the investigation
(Zaman & Dahl 1999), this was conjectured to be the mechanism. (ii) The mechanism
is similar to that involved in longitudinal acoustic resonance. The shock becomes the
upstream ‘closed’ end and also acts like a vibrating diaphragm. Resonance occurs at
a frequency when the right impedance condition is satisfied (Morse 1948; see further
discussion shortly). An antinode in pressure fluctuation occurs just downstream of
the shock while a node occurs near the nozzle exit. The fundamental corresponds to
the case when one-quarter wavelength is fitted within the approximate distance from
the foot of the shock to the nozzle exit (L′).

It is apparent that accumulated evidence points to (ii) as the likely mechanism. The
main difficulty with (i) is that it stipulates one full wavelength be contained within the
length L′ at the fundamental, resonance being possible at all higher harmonics. The
results presented in the foregoing indicate that the fundamental in fact corresponds to
a one-quarter-wave resonance, commensurate with (ii). Furthermore, even harmonics
are absent and resonance at only the odd harmonics takes place.

Certain trends in the data can now be explained qualitatively. Consider a low supply
pressure when there is a resonance in stage 2. The shock is somewhere downstream
of the throat (figure 24a) and a standing ‘ 3

4
-wave’ is involved. (The standing waves

are not depicted in figure 24 but the reader can imagine a superposition of the
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patterns of figure 23 on figure 24.) The distance from the foot of the shock to the
exit of the nozzle (L′) imposes the length scale while a combination of phase speeds
of the downstream- and upstream-propagating waves imposes the time scale. Many
of the observations can be reconciled simply by considering the variation of L′. As
the supply pressure is increased, the shock moves downstream resulting in a decrease
in L′. This is followed by a decrease in the wavelength and hence an increase in the
frequency. With a further increase in supply pressure, a decreasing length L′ can no
longer support 3

4
-waves and the resonance drops to the 1

4
-wave fundamental. This is

accompanied by a decrease in the frequency by approximately a factor of 3. With a
further increase in the supply pressure, there is again a decrease in L′, resulting in an
increase in the frequency. The resonance ceases when the shock location has moved
sufficiently downstream when the flow can no longer support the ‘ 1

4
-wave’.

A qualitative explanation can also be given with a similar reasoning for the observed
θ-dependence of the frequency curves. Consider that the flow is just choked at the
throat at a certain supply pressure. In order to move the shock from the throat to
the exit, a finite differential pressure is required for a given divergent section. The
required differential pressure to achieve this should be smaller for a smaller value
of θ. This can be appreciated by considering the limiting case of θ = 0, when an
infinitesimal differential pressure should move the shock from the throat to the exit.
Thus, with increasing supply pressure, the rate of decrease in L′ is faster when θ is
smaller. This would translate into a steeper slope of the frequency variation with Mj ,
for smaller θ.

It is possible that to a first approximation equation (1) given in § 3.2 might be
applicable for prediction of the frequency, after having the length scale L replaced by
L′. The characteristic dependence of L′ on Mj and θ, as discussed in the foregoing,
would qualitatively explain the observed frequency variations. The functional depen-
dence of L′/L on Mj and θ, modelled with some simplification and a combination of
equations (1) and (2), could be verified against the experimental data.

However, much remains unknown. To appreciate the difficulty, consider first the
physical processes in the fundamental acoustic resonance of a cylindrical tube with
one end closed and without any flow. The feedback loop involves four segments: (i)
a compression wave travels downstream and returns an expansion wave upon exiting
the open end, (ii) the expansion wave travels back and is reflected from the closed end,
(iii) the reflected expansion wave travels downstream and returns a compression wave
upon exiting the open end, (iv) the compression wave travels upstream and is reflected
back to complete the cycle. The process yields the ‘quarter wave’ equation (equation
(1) without the square-root term on the right-hand side), with the simplifying fact that
the phase-speed is a constant (a0). A similar process is expected in the present flow,
with several complications. The phase speeds are likely to be variable with distance
as well as with the segment of the feedback loop. The wavefronts may not be ‘plane’.
We have seen that the shock changes drastically within the cycle. Thus, the location
of the upstream reflection boundary for the compression wave may be different from
that of the expansion wave. All these factors make it difficult to model the flow
with confidence. Thus, further efforts to arrive at a rational set of equations for the
prediction of the frequency were not considered at this time.

5.2. Summary

The main conclusions of the study are enumerated in the following.
1. The subject phenomenon takes place when there is a shock in the diverging

section of the nozzle.
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2. The frequency variation exhibits a staging behaviour. The fundamental (stage 1)
occurs at relatively large supply pressures and corresponds to a standing one-quarter
wave. With decreasing pressure, higher stages at only the odd harmonics take place.
For all stages, the unsteady fluctuations are found to be of the axisymmetric shape
in this experiment.

3. The frequency characteristics are found to depend on the half-angle of divergence
of the nozzle, θ. For smaller θ the slope of the frequency variation with Mj becomes
steeper.

4. The distance from the foot of the shock to the exit of the nozzle imposes the
length scale, L′. The trends in the frequency variation are qualitatively explained
simply from the characteristic variation of the length scale L′. In a given stage, the
shock moves downstream with increasing supply pressure; thus, a decreasing L′ leads
to an increasing frequency. When θ is smaller, the shock is pushed downstream at
a faster rate with increasing supply pressure; the faster decrease in L′ explains the
steeper slope of the frequency variation curve.

5. Correlation equations are provided for the prediction of the resonance frequency
from a collection of data for single round nozzles. These equations also satisfactorily
predict the frequencies for a wide variety of non-axisymmetric nozzles.

6. A companion numerical study captures the essence of the phenomenon. This
study suggests that the shock and its unsteadiness govern the resonance, and the
exact nature of the separated flow downstream of the shock may not be important
in the phenomenon. The numerical results also clearly capture the standing waves at
the resonant conditions that were inferred from the experimental data but could not
be measured with confidence due to probe interference.

7. The resonance depends on the characteristics of the boundary layer prior to the
shock-induced separation. Disturbances placed at locations upstream of the separation
tend to suppress the resonance. It is likely that this effect occurs through a disruption
of the azimuthal coherence of the unsteady flow. This effect provides an engineering
solution for avoiding the resonance as well as reducing ‘internal noise’ arising from
an intermittent occurrence of the resonance. There is a potential for noise benefit
simply by suitable tripping of the boundary layer just prior to and aft of the nozzle’s
throat.

Aerospace Propulsion and Power Research and Technology Base Program sup-
ported the work. Thanks are due to Mr John Abbott, Dr Frank Wang, Dr Jayanta
Panda of NASA Glenn, Professor Christopher Tam of Florida State University, Mr
Craig Hunter of NASA Langley and Professor Ivana Milanovic of the University of
Hartford, for inputs in various forms throughout this investigation.
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